
4.3 Fourier Series

Definition 4.41. Exponential Fourier series: Let the (real or complex)
signal r (t) be a periodic signal with period T0.
Suppose the following Dirichlet conditions are satisfied:

(a) r (t) is absolutely integrable over its period; i.e.,
∫ T0
0 |r (t)|dt <∞.

(b) The number of maxima and minima of r (t) in each period is finite.

(c) The number of discontinuities of r (t) in each period is finite.

Then r (t) can be “expanded” into a linear combination of the complex
exponential signals

(
ej2π(kf0)t

)∞
k=−∞ as

r̃ (t) =
∞∑

k=−∞

cke
j2π(kf0)t = c0 +

∞∑
k=1

(
cke

j2π(kf0)t + c−ke
−j2π(kf0)t

)
(37)

where

f0 =
1

T0
and

ck =
1

T0

α+T
0∫

α

r (t) e−j2π(kf0)tdt, (38)

for some arbitrary α.
We give some remarks here.

• r̃ (t) =

{
r (t) , if r (t) is continuous at t
r(t+)+r(t−)

2 , if r (t) is not continuous at t

Although r̃ (t) may not be exactly the same as r(t), for the purpose
of our class, it is sufficient to simply treat them as being the same (to
avoid having two different notations). Of course, we need to keep in
mind that unexpected results may arise at the discontinuity points.

• The parameter α in the limits of the integration (38) is arbitrary. It
can be chosen to simplify computation of the integral. Some references
simply write ck = 1

T0

∫
T0

r (t) e−jkω0tdt to emphasize that we only need

to integrate over one period of the signal; the starting point is not
important.
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• The coefficients ck are called the (kth) Fourier (series) coefficients
of (the signal) r (t). These are, in general, complex numbers.

• c0 = 1
T0

∫
T0

r (t) dt = average or DC value of r(t)

• The quantity f0 = 1
T0

is called the fundamental frequency of the
signal r (t). The kth multiple of the fundamental frequency (for positive
k’s) is called the kth harmonic.

• ckej2π(kf0)t + c−ke
−j2π(kf0)t = the kth harmonic component of r (t).

k = 1 ⇒ fundamental component of r (t).

4.42. Being able to write r (t) =
∑∞

k=−∞ cke
j2π(kf0)t means we can easily

find the Fourier transform of any periodic function:

r (t) =
∞∑

k=−∞

cke
j2π(kf0)t F−−⇀↽−−

F−1
R(f) =

The Fourier transform of any periodic function is simply a bunch of
weighted delta functions occuring at multiples of the fundamental frequency
f0.

4.43. Formula (38) for finding the Fourier (series) coefficients

ck =
1

T0

α+T
0∫

α

r (t) e−j2π(kf0)tdt (39)

is strikingly similar to formula (5) for finding the Fourier transform:

R(f) =

∞∫
−∞

r(t)e−j2πftdt. (40)

There are three main differences.
We have spent quite some effort learning about the Fourier transform of

a signal and its properties. It would be nice to have a way to reuse those
concepts with Fourier series. Identifying the three differences above lets us
see their connection.
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4.44. Getting the Fourier coefficients from the Fourier transform:

Step 1 Consider a restricted version rT0(t) of r(t) where we only consider r(t)
for one period.

1



Step 2 Find the Fourier transform RT0(f) of rT0(t)

Step 3 The Fourier coefficients are simply scaled samples of the
Fourier transform :

ck =
1

T0
RT0(kf0).

Example 4.45. Train of Impulses: Find the Fourier series expansion for
the train of impulses

δ(T0)(t) =
∞∑

n=−∞
δ (t− nT0)

drawn in Figure 22. This infinite train of equally-spaced -functions is usually
denoted by the Cyrillic letter (shah).

1

3 			‐2 ‐ 0									 2 3

1       1       1       1       1       1       1

Figure 22: Train of impulses
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4.46. The Fourier series derived in Example 4.45 gives an interesting
Fourier transform pair:

∞∑
n=−∞

δ (t− nT0) =
∞∑

k=−∞

1

T0
ej2π(kf0)t F−−⇀↽−−

F−1
(41)

1

‐3 			‐2 ‐ 0									 2 3

1       1       1       1       1       1       1

1




 ‐3 			‐2 ‐ 0								 2 3

A special case when T0 = 1 is quite easy to remember:

∞∑
n=−∞

δ (t− n)
F−−⇀↽−−
F−1

∞∑
k=−∞

δ (f − k) (42)

1

‐3							‐2 ‐1 0								1 2 3

1       1       1       1       1       1       1

1




 ‐3							‐2 ‐1 0								1 2 3

1       1       1       1       1       1       1

Once we remember (42), we can easily use the scaling properties of the
Fourier transform (21) and the delta function (18) to generalize the special
case (42) back to (41):

∞∑
n=−∞

δ (at− n) = x (at)
F−−⇀↽−−
F−1

1

|a|
X

(
f

a

)
=

1

|a|

∞∑
k=−∞

δ

(
f

a
− k
)

1

|a|

∞∑
n=−∞

δ
(
t− n

a

) F−−⇀↽−−
F−1

1

|a|
|a|

∞∑
k=−∞

δ (f − ka)

∞∑
n=−∞

δ
(
t− n

a

) F−−⇀↽−−
F−1
|a|

∞∑
k=−∞

δ (f − ka)

At the end, we plug-in a = f0 = 1/T0.

59





Example 4.47. Find the Fourier coefficients of the square pulse periodic
signal [6, p 57].

1

44

: the scaled 

Fourier transform of 
the restricted (one 
period) version of .

period

0

0

ck =
1

T0
RT0 (kf0) =

1

T0

(
T0

2
sinc

(
2π

(
T0

4

)
(f)

)∣∣∣∣
f=kf0

)
=

1

2
sinc

(
k
π

2

)
=

1

2

sin
(
kπ2
)

kπ2
=

sin
(
kπ2
)

kπ

k k × π
2 sin

(
k × π

2

)
ck =

sin(k π2 )
kπ

0

1

2

3

4

5
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Remarks:

(a) Multiplication by this signal is equivalent to a switching (ON-OFF)
operation. (Same as periodically turning the switch on (letting another
signal pass through) for half a period T0.

44

OFF ON OFF ON OFF ON OFF ON OFF ON OFF

(b) This signal can be expressed via a cosine function with the same period:

r (t) = 1 [cos (2πf0t) ≥ 0] =

{
1, cos (2πf0t) ≥ 0,
0, otherwise.

1

44

(c) A duty cycle is the percentage of one period in which a signal is
“active”. Here,

duty cycle = proportion of the “ON” time =
width

period
.

In this example, the duty cycle is T0/2
T0

= 50%. When the duty cycle is 1
n ,

the nth harmonic (cn) along with its nonzero multiples are suppressed.
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4.48. Parseval’s Identity: Pr =
〈
|r (t)|2

〉
= 1

T0

∫
T0

|r (t)|2 dt =
∞∑

k=−∞
|ck|2.

4.49. Fourier series expansion for real valued function: Suppose
r (t) in the previous section is real-valued; that is r∗ = r. Then, we have
c−k = c∗k and we provide here three alternative ways to represent the Fourier
series expansion:

r̃ (t) =
∞∑

k=−∞

cne
j2πkf0t = c0 +

∞∑
k=1

(
cke

j2πkf0t + c−ke
−j2πkf0t

)
(43a)

= c0 +
∞∑
k=1

(ak cos (2πkf0t)) +
∞∑
k=1

(bk sin (2πkf0t)) (43b)

= c0 + 2
∞∑
k=1

|ck| cos (2πkf0t+ ∠ck) (43c)

where the corresponding coefficients are obtained from

ck =
1

T0

α+T
0∫

α

r (t) e−j2πkf0tdt =
1

2
(ak − jbk) (44)

ak = 2Re {ck} =
2

T0

∫
T0

r (t) cos (2πkf0t) dt (45)

bk = −2Im {ck} =
2

T0

∫
T0

r (t) sin (2πkf0t) dt (46)

2 |ck| =
√
a2
k + b2

k (47)

∠ck = − arctan

(
bk
ak

)
(48)

c0 =
a0

2
(49)

The Parseval’s identity can then be expressed as

Pr =
〈
|r (t)|2

〉
=

1

T0

∫
T0

|r (t)|2dt =
∞∑

k=−∞

|ck|2 = c2
0 + 2

∞∑
k=1

|ck|2
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4.50. To go from (43a) to (43b) and (43c), note that when we replace c−k
by c∗k, we have

cke
j2πkf0t + c−ke

−j2πkf0t = cke
j2πkf0t + c∗ke

−j2πkf0t

= cke
j2πkf0t +

(
cke

j2πkf0t
)∗

= 2 Re
{
cke

j2πkf0t
}
.

• Expression (43c) then follows directly from the phasor concept:

Re
{
cke

j2πkf0t
}

= |ck| cos (2πkf0t+ ∠ck) .

• To get (43b), substitute ck by Re {ck}+ j Im {ck}
and ej2πkf0t by cos (2πkf0t) + j sin (2πkf0t).

Example 4.51. For the train of impulses in Example 4.45,

∞∑
n=−∞

δ (t− n) =
∞∑

k=−∞

1

T0
ej2π(kf0)t =

1

T0
+

2

T0

∞∑
k=1

cos kω0t (50)

Example 4.52. For the rectangular pulse train in Example 4.47,

1

44Fourier series expansion:
1
2

1 1
3

1
5 ⋯

1 1
3

1
5 ⋯

1
2

2
cos 2

2
3 cos 2 3

2
5 cos 2 5 ⋯

Trigonometric Fourier series expansion: 2cos
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1 [cosω0t ≥ 0] =
1

2
+

2

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)
(51)

Example 4.53. Bipolar square pulse periodic signal [6, p 59]:

sgn(cosω0t) =
4

π

(
cosω0t−

1

3
cos 3ω0t+

1

5
cos 5ω0t−

1

7
cos 7ω0t+ . . .

)

1 

-1 

0T  0T−  t

1 

0T  0T−  t

 

Figure 23: Bipolar square pulse periodic signal
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